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Abstract— This very short paper introduces a new 

implementation of a full-adder using the binary stored carry-or-

borrow (BSCB) representation and the digit set {-1, 0, +1, +2}.  
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Let be three N-bit binary numbers denoted by X, Y and Z 
respectively: 
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Let the sum be a (N+1) bit binary numbers denoted by S. 
For the sake of memory, table below shows the result of 
addition of 3 bits at position n leading to the full-adder 
based on carry-save form and the digit set {0, +1, +2, +3}.   
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In this computation there is no assumption about the 
possible value of a carry either in or out at position n. 
However, an assumption An=1 can be made at each 
position as displayed in figure below. The probability to 
generate a carry is equal to the probability not to generate 
one. New sum has also to handle an outgoing carry An+1. 
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 With this assumption, sum is now expressed within the 
digit set {-1, 0, +1, +2}, this representation is called binary 
stored-carry-or-borrow (BSCB) by Parhami [1]. 
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Coding variables Un and Rn+1 expresses sum Sn. 
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Karnaugh table for Un: 
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 Karnaugh table for Rn+1: 
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A possible expression of sum variables and 
implementation with XOR and AND gates is given below. 
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Based on the BSCB representation, ripple carry adders, 
carry-look-ahead adders as well as array multipliers can be 
implemented (see [2]). It seems that the BSCB 
representation leads rather directly to XOR-AND-XOR 
gate implementation. 
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