## **BSCB** Full-Adder

Daniel Torno Exorand Technology, France contact@exorand.com

Abstract— This very short paper introduces a new implementation of a full-adder using the binary stored carry-orborrow (BSCB) representation and the digit set  $\{-1, 0, +1, +2\}$ .

Keywords: full-adder; redundant binary representation; binary stored-carry-or-borrow representation.

Let be three N-bit binary numbers denoted by X, Y and Z respectively:

 $X = x_{N-1} 2^{N-1} + x_{N-2} 2^{N-2} + \dots + x_1 2^1 + x_0 2^0$   $Y = y_{N-1} 2^{N-1} + y_{N-2} 2^{N-2} + \dots + y_1 2^1 + y_0 2^0$  $Z = z_{N-1} 2^{N-1} + z_{N-2} 2^{N-2} + \dots + z_1 2^1 + z_0 2^0$ 

Let the sum be a (N+1) bit binary numbers denoted by S. For the sake of memory, table below shows the result of addition of 3 bits at position n leading to the full-adder based on carry-save form and the digit set  $\{0, +1, +2, +3\}$ .

| $X_n$                 | 0 | 0  | 0  | 0  | 1  | 1  | 1  | 1  |
|-----------------------|---|----|----|----|----|----|----|----|
| $y_n$                 | 0 | 0  | 1  | 1  | 0  | 0  | 1  | 1  |
| $Z_n$                 | 0 | 1  | 0  | 1  | 0  | 1  | 0  | 1  |
| <b>S</b> <sub>n</sub> | 0 | +1 | +1 | +2 | +1 | +2 | +2 | +3 |

In this computation there is no assumption about the possible value of a carry either in or out at position n. However, an assumption An=1 can be made at each position as displayed in figure below. The probability to generate a carry is equal to the probability not to generate one. New sum has also to handle an outgoing carry An+1.



With this assumption, sum is now expressed within the digit set  $\{-1, 0, +1, +2\}$ , this representation is called binary stored-carry-or-borrow (BSCB) by Parhami [1].

| $\boldsymbol{\mathcal{X}}_n$ | 0  | 0 | 0 | 0  | 1 | 1  | 1  | 1  |
|------------------------------|----|---|---|----|---|----|----|----|
| <i>Y</i> <sub><i>n</i></sub> | 0  | 0 | 1 | 1  | 0 | 0  | 1  | 1  |
| $Z_n$                        | 0  | 1 | 0 | 1  | 0 | 1  | 0  | 1  |
| <b>S</b> <sub>n</sub>        | -1 | 0 | 0 | +1 | 0 | +1 | +1 | +2 |

Coding variables Un and Rn+1 expresses sum Sn.

| <b>S</b> <sub>n</sub> | -1 | 0 | +1 | +2 |
|-----------------------|----|---|----|----|
| $r_{n+1}$             | 1  | 0 | 0  | 1  |
| $\mathcal{U}_n$       | 1  | 0 | 1  | 0  |

Karnaugh table for Un:

| $X_n$           | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
|-----------------|---|---|---|---|---|---|---|---|
| $y_n$           | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
| $Z_n$           | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| $\mathcal{U}_n$ | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 |

Karnaugh table for Rn+1:

| $X_n$           | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
|-----------------|---|---|---|---|---|---|---|---|
| $\mathcal{Y}_n$ | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
| Z,n             | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| $r_{n+1}$       | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |

A possible expression of sum variables and implementation with XOR and AND gates is given below.



Based on the BSCB representation, ripple carry adders, carry-look-ahead adders as well as array multipliers can be implemented (see [2]). It seems that the BSCB representation leads rather directly to XOR-AND-XOR gate implementation.

- Behrooz Parhami, "Generalized Signed-Digit Number Systems: A unifying Framework For Redundant Number Representation", *IEEE Transactions on Computer*, Vol 39, no. 1, pp 89-98, January 1990.
- [2] Daniel Torno and Behrooz Parhami, "Arithmetic Operators Based on the Binary Stored-Carry-or-Borrow Representation," *Proc. 44th Asilomar Conf. Signals, Systems, and Computers*, Pacific Grove, CA, pp.1148-1152, 7-10 November 2010.