BSCB Full-Adder

Daniel Torno
Exorand Technology, France
contact@exorand.com

Abstract- This very short paper introduces a new implementation of a full-adder using the binary stored carry-orborrow (BSCB) representation and the digit set $\{-1,0,+1,+2\}$.

Keywords: full-adder; redundant binary representation; binary stored-carry-or-borrow representation.

Let be three N-bit binary numbers denoted by X, Y and Z respectively:

$$
\begin{aligned}
& X=x_{N-1} \cdot 2^{N-1}+x_{N-2} \cdot 2^{N-2}+\ldots . .+x_{1} \cdot 2^{1}+x_{0} \cdot 2^{0} \\
& Y=y_{N-1} \cdot 2^{N-1}+y_{N-2} \cdot 2^{N-2}+\ldots . \cdot+y_{1} \cdot 2^{1}+y_{0} \cdot 2^{0} \\
& Z=z_{N-1} \cdot 2^{N-1}+z_{N-2} \cdot 2^{N-2}+\ldots .+z_{\cdot} \cdot 2^{1}+z_{0} \cdot 2^{0}
\end{aligned}
$$

Let the sum be a $(\mathrm{N}+1)$ bit binary numbers denoted by S . For the sake of memory, table below shows the result of addition of 3 bits at position n leading to the full-adder based on carry-save form and the digit set $\{0,+1,+2,+3\}$.

x_{n}	0	0	0	0	1	1	1	1
y_{n}	0	0	1	1	0	0	1	1
z_{n}	0	1	0	1	0	1	0	1
S_{n}	0	+1	+1	+2	+1	+2	+2	+3

In this computation there is no assumption about the possible value of a carry either in or out at position n. However, an assumption $A n=1$ can be made at each position as displayed in figure below. The probability to generate a carry is equal to the probability not to generate one. New sum has also to handle an outgoing carry $\mathrm{An}+1$.

$$
\begin{aligned}
& \\
& S_{n}=x_{n}+y_{n}+z_{n}+A_{n}-2 * A_{n+1}
\end{aligned}
$$

With this assumption, sum is now expressed within the digit set $\{-1,0,+1,+2\}$, this representation is called binary stored-carry-or-borrow (BSCB) by Parhami [1].

x_{n}	0	0	0	0	1	1	1	1
y_{n}	0	0	1	1	0	0	1	1
z_{n}	0	1	0	1	0	1	0	1
S_{n}	-1	0	0	+1	0	+1	+1	+2

Coding variables Un and $\mathrm{Rn}+1$ expresses sum Sn .

\boldsymbol{S}_{n}	-1	0	+1	+2
\boldsymbol{r}_{n+1}	1	0	0	1
\boldsymbol{u}_{n}	1	0	1	0

Karnaugh table for Un:

x_{n}	0	0	0	0	1	1	1	1
y_{n}	0	0	1	1	0	0	1	1
z_{n}	0	1	0	1	0	1	0	1
u_{n}	1	0	0	1	0	1	1	0

Karnaugh table for $\mathrm{Rn}+1$:

x_{n}	0	0	0	0	1	1	1	1
y_{n}	0	0	1	1	0	0	1	1
z_{n}	0	1	0	1	0	1	0	1
r_{n+1}	1	0	0	0	0	0	0	1

A possible expression of sum variables and implementation with XOR and AND gates is given below.

Based on the BSCB representation, ripple carry adders, carry-look-ahead adders as well as array multipliers can be implemented (see [2]). It seems that the BSCB representation leads rather directly to XOR-AND-XOR gate implementation.
[1] Behrooz Parhami, "Generalized Signed-Digit Number Systems: A unifying Framework For Redundant Number Representation", IEEE Transactions on Computer, Vol 39, no. 1, pp 89-98, January 1990.
[2] Daniel Torno and Behrooz Parhami, "Arithmetic Operators Based on the Binary Stored-Carry-or-Borrow Representation," Proc. 44th Asilomar Conf. Signals, Systems, and Computers, Pacific Grove, CA, pp.11481152, 7-10 November 2010.

